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Abstract

The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a
speed different from that of the main rotor, on the dynamic behaviour of the latter have been already
studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating
systems. A planar model, namely the Jeffcott’s rotor, was used. The present study is aimed at investigating,
through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect.
The parameters of the system affecting the dynamic stability are identified and the threshold of instability is
then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile
range of instability for forward and backward whirling motions. An experimental validation on a simple
test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous
rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy
currents.
r 2004 Elsevier Ltd. All rights reserved.
1. Motivation

The literature on rotordynamics [1–3] usually includes detailed analysis of the role of non-
rotating and synchronously rotating damping on the dynamic stability of rotors. It is well known
see front matter r 2004 Elsevier Ltd. All rights reserved.
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that they play a different role in the dynamic stability of the rotating system in subcritical and
supercritical regimes of the spin speed: non-rotating damping is always stabilizing in both fields,
rotating damping has a destabilizing effect on forward whirling motions in supercritical regime,
while backward whirls are naturally stable. This knowledge in the past was suitable for
interpreting several failures that occurred in industrial and space systems, due to the dynamic
instability [4].
More recently new applications deal with multibody rotors, in which several rotating bodies are

either connected to each other by elastic joints (like in space mechanisms and spacecrafts) [5,6] or
constrained to the same stator [2]. The so-called dual rotors [2] are a class of rotating systems
where the structural damping associated to shafts rotating in the opposite direction can be
effective for the stability of vibration. Large paper printers, gearboxes, textile machines often have
multiple rotating rods constrained to the same frame, rotating at different speeds and sometimes
in opposite directions. Free rotors [7,8] like spinning spacecraft systems, satellites or momentum
and reaction wheels are typical cases where damping associated to the different parts of the system
behaves as non-synchronous. Spinning spacecraft, in which the only conventional way of applying
non-rotating damping is to introduce de-spun devices, can be stabilized by introducing counter-
rotating damping, through active devices like magnetic or electrostatic bearings [5,6].
In the presence of multiple rotors, problems related to the dynamic stability may occur,

depending on the damping, when it is appreciated as non-synchronously rotating with respect to
the spin speed of the main rotor. A non-synchronous rotating contribution corresponds to an
energy dissipation occurring in parts rotating at a spin speed which is lower or higher than the
angular velocity of the main rotor. A known case in the literature is already cited: lubricated
bearings, where the oil film is assumed to rotate at half the spin speed [9–11]. In some situations
this causes unstable behaviour, usually referred to as oil whip. The threshold of this kind of
instability is in many cases approximately close to twice the first critical speed. Further examples
of non-synchronously rotating damping are structural damping in shafts, rotating at different spin
speeds, induction effects due to electromechanical coupling in motors, active and passive magnetic
bearings and dampers, if the dissipation occurs in conductive parts rotating at various speeds.
In a previous paper [12] it was already found that two relevant conditions have to be discussed:

when the non-synchronous damping is rotating in the same direction of the rotor, which can be
referred to as co-rotating and when it rotates in the opposite direction, referred to as counter-
rotating. In Ref. [12] a preliminary analysis was based on the Jeffcott’s rotor model, i.e., plane 2
real dof’s model. This model allowed realizing that co-rotating damping decreases the stability of
forward whirling modes of the rotor when the rotational speed of the damper increases. This
effect is due to an imaginary and negative contribution to the stiffness of the system (circulatory
effect) appearing in the equation of motion of the rotor [12]. It consists of the product between the
non-synchronous damping coefficient and the spin speed at which this action is exerted. The
minus sign in the above term corresponds to a co-rotation of the non-synchronous effect, while an
equivalent positive stiffness contribution is found when a counter-rotation occurs. A counter-
rotating damping, with either low damping coefficient or acting at a lower spin speed, increases
the stability of forward modes but simultaneously tends to decrease that of backward whirling
modes. In the case of the Jeffcott rotor, a suitable value of the product of the non-synchronous
damping coefficient and the speed, assuring the simultaneously stability of both forward and
backward modes, can be found. Backward modes can become unstable if a higher value of
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counter-rotating damping is achieved, while forward ones show no threshold of instability. This
behaviour is quite new, since backward modes are usually assumed to be naturally stable: this was
the most original result achieved by the previous analysis. The latter was performed under the
assumption that no gyroscopic effect was present. Practical applications usually exhibit
gyroscopic effects.
Several applications among those already mentioned include an unavoidable gyroscopic effect.

This paper analyzes the joint effect between gyroscopy and non-synchronous rotating damping in
terms of dynamic stability. The main tool provided to mechanical engineers shall be a stability
map, taking into account the role of the non-synchronous rotating damping. To make expedient
the demonstration of the effect herewith analyzed, a preliminary experimental validation has been
carried out on a simple test rig. A non-synchronous damping action is induced by eddy current
dampers on a conductive disc rotor, equipped with permanent magnets, either co-rotating or
counter-rotating. The latter allowed showing the phenomenon itself and the dependence of the
non-synchronous rotating damping on the rotational speed of the rotor. In principle, non-
synchronous damping can be also synthesized in active devices, without resorting to a damper
rotating at the required speed, by supplying a suitable control law to the magnetic force in a such
a way that it appears to be co-rotating or counter-rotating. This application is particularly
interesting for statorless rotors, e.g., spinning spacecrafts, where stability can be achieved even in
cases for which passive stabilization is difficult [6,13].
2. System modelling

2.1. A didactic demonstrator for preliminary experiments

To make expedient the discussion of the topic herewith investigated a simple didactic
demonstrator was built to visualize the relevant dynamic effects of non-synchronous damping on
a disc rotor. A preliminary description is proposed here to deal quite easily with the analytical
formulation of the model, including the equations of motion of the whole system.
The demonstrator was conceived to be as much as possible a typical four real dof rotor, easily

analyzed by the well-known model proposed in the literature [3]. It consists (see Figs. 1 and 2
including, respectively, a pitcure and a sketch of the system) of two rotating systems: a rigid
frame, composed of two horizontal and one vertical thick plates in aluminium, holds at the top of
a first pendulum rotor, a disc being suspended by a quill steel shaft, and at the bottom a second
disc rotor, both fed by brushless motors. Around this axisymmetric system of two rotors a sort of
rotating platform has been built, composed of two circular plates and a plexiglass cylindric body.
This body is connected to the first pendulum rotor and rotates at the same angular velocity. This
way it resembles a satellite platform with an internal suspended mass, with non-negligible
gyroscopic effects. Originally, it was required to make the demonstrator suitable for a critical
review of the rotordynamic behaviour of the satellite Galileo Galilei [6]. To detect the lateral
displacements along two perpendicular radial directions of the isotropic pendulum rotor a couple
of optical sensors was mounted on the base of the rotating platform, as it should be done in a
spacecraft system (actually both figures show only one sensor to make it easier to understand the
layout of the test rig).
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Fig. 1. Picture of the demonstrator built for the study of non-synchronous damping.

Fig. 2. Description of the experimental test rig.

E. Brusa, G. Zolfini / Journal of Sound and Vibration 281 (2005) 815–834818
If one analyzes the damping distribution in the above test rig the following can be appreciated:
a non-rotating contribution applied by the structural damping and friction effects occurring in
non-rotating parts of the stator (silent blocks at the bottom of the lower plate, threaded joints,
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inner damping of plates), a rotating contribution due to the structural damping and friction
associated to the first pendulum rotor (clamps, quill shaft, disc) and the damping effect of second
rotor which can be considered either rotating or non-rotating depending on its temporary
dynamic status. No coupling is present between the first and the second rotor without an explicit
coupling action, which was provided in this case by equipping the disc of the top rotor with a
permanent magnet being able to induce eddy currents in the conductive material of the second
disc. If the disc with the magnet is placed at a small distance from the aluminium disc, the latter
works as an eddy current damper [14,15]. Since the pendulum disc whirls, the magnetic flux lines
of the supported magnet cross the bottom disc, which can be fixed (non-rotating), rotating
(synchronously or not) either in the same direction (co-rotation) or in the opposite one (counter-
rotating or contra-rotating). In this way the electromechanical coupling introduces the required
damping effect [15]. The energy dissipation due to the eddy currents occurs in the aluminium disc
supplying a damping action which is non-rotating, if the disc is fixed, co-rotating if it rotates in the
same direction with respect to the disc with the magnet and counter-rotating if it spins in the
opposite direction.
Although the nature of the phenomenon studied here cannot be easily investigated

through experiments, because of the complexity of a system equipped with non-synchronous
actions, a preliminary validation of the model has been performed on the above demon-
strator. Experiments have been done to find the frequencies and the equilibrium configura-
tion of the system in rotation, corresponding to the rotating velocities of the main rotor,
consisting of the disc equipped with a permanent magnet, and the secondary rotor, consisting of
the aluminium disc either co-rotating or counter-rotating. A detailed stability analysis of
the whirling motions has been carried out to validate the map of stability found by modelling
the system.

2.2. Construction details of the test rig

To allow a fast modelling of the above demonstrator in the following section, the relevant
design parameters and the equipments details are herewith collected. Referring to the
sketch in Fig. 2: the main rotor is an aluminium disc suspended by a quill steel shaft,
equipped with axially polarized ferrite permanent ring magnet. The outer diameter of the
disc is 68mm and the height 22mm, while the mass is 222 g. The shaft has a diameter of 0.5mm
and a length of 147mm. A second disc rotor is located in the lower part of the device:
it is an aluminium disc supported by a steel shaft, either co-rotating or counter-rotating
with respect to the first disc. The two rotors are fed by brushless motors Oriental Motors,
model HBL 540 KA, for the disc with the permanent magnet and model HBL 425 KA
for the second one. Two optical sensors are mounted on the stationary part of the device.
They are based on infrared diode Siemens SFH485 and on photodiode Siemens BPW34.
These sensors measure the lateral displacements of the magnetic disc suspended by the thin
shaft in two orthogonal directions. The displacements are recorded by a Bakker Electronics-2580
Multi Channel Waveform Analyzer. The drivers of the motor’s provide a speed output
signal from which it is possible to know the angular velocity of the discs through an Hameg
HM8122 frequencymeter. The motor’s speed is controlled by means of a simple speed
potentiometer.
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2.3. Rotor with 4 real dof and non-synchronous rotating damping

2.3.1. Model description
To perform a preliminary analysis of the relevant phoenomena affecting the dynamic

behaviour of a gyroscopic rotating system a typical model proposed in the literature [3] is an
axisymmetric shaft supporting a disc, with non-negligible mass m and moments of inertia Jt

and Jp; simply supported by bearings (Fig. 3). The shaft is assumed to be ideally rigid and
bearings elastic, although no lack of generality occurs if one assumes it to be a flexible
shaft on rigid bearings: just in case of structural damping associated to the shaft it becomes
significant where the compliance is actually located, either on statoric or rotoric part
of the system. Four degrees of freedom of the centre of mass of the rotor are usually
introduced into the equations of motion, namely lateral displacements x and y and
rotations fy and fx about the transversal axes x and y, respectively. Nevertheless,
complex notation allows reducing the dimensions of the resulting equations of motion of
system [3]:

z ¼ x þ i y; ð1Þ

f ¼ fy � ifx; ð2Þ

z being the complex lateral displacement and f the complex rotation. The position of the disc on
the shaft, described by quote a, may be relevant in terms of Campbell diagram of the whole rotor
and of the critical speeds computation as in Ref. [3]. In the case of the demonstrator the shaft is
clamped at one end and free on the other, where the disc is suspended. In the present investigation
the above model was required to deal with the gyroscopic effect, instead of the Jeffcott’s rotor,
already used for the previous one, based only on the role of the co-rotating and counter-rotating
damping in a non-gyroscopic system [12].
Fig. 3. Sketch of the real 4 dof ’s model for rotordynamics with gyroscopic effects.
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2.3.2. Equations of motion

The model of a 4 real dof’s rotor is suitable to analyze the combined effects of gyroscopy and
the non-synchronous rotating damping, and particularly to predict the experimental behaviour of
the whole demonstrator. The test case focused the dynamic behaviour of the main rotor
(pendulum), while the second one is considered only as an external damper to apply non-
synchronous actions. The layout of the rotor includes a disc, supported by a very flexible shaft
with vertical axis, clamped at the top. A lumped parameters model can be easily obtained to
reduce the whole continous system in a 4 dof’s rotor. Due to the simplicity of the system a straight
assumption can be made: the elastic behaviour is completely attributed to the quill shaft, i.e., the
stiffness will be computed by evaluating that of the shaft, including the stiffnening effect of
the pendulum, while relevant inertial properties are attributed only to the disc, and neglected
for the shaft [3]. The generalized co-ordinates are the translation of the centre of gravity
of the disc in x and y directions and the two rotations of the disc about x and y axes, because
of the axial symmetry the complex notation [1,3] is preferred and the generalized co-ordinates
vector holds

q
� �

¼
z

f

� �
¼

x þ i y

fy � ifx

( )
: ð3Þ

Assuming that the angular velocity of the disc and of the non-synchronous damper are
constant, the linearized equation of motion of the system is

M €qþ ðC � ioGÞ _qþ K� ioCr � ioc Ccð Þ q ¼ f; ð4Þ

whereM; G; C and K are the inertia, gyroscopy, damping (global) and stiffness matrices; f is the
vector of external forces and q is the vector of complex co-ordinates defined in Eq. (3):

q ¼ z f
� �T

ð5Þ

M ¼
m 0

0 Jt

� �
; G ¼

0 0

0 Jp

� �
; K ¼

k1;1 k1;2

k2;1 k2;2

� �
; ð6Þ

C ¼ Cn þ Cr þ Cc ¼
cz czf

cfz cf

� �
; ð7Þ

Cn ¼
czn

czfn

cfzn
cfn

� �
; Cr ¼

czr
czfr

cfzr
cfr

� �
; Cc ¼

czc
czfc

cfzc
cfc

� �
: ð8Þ

The subscript r stands for rotating, n for non-rotating, while the subscripts z and f stand for
quantities related, respectively, to translational (z) and rotational (fÞ co-ordinates. Scalar
quantities are: o; the angular velocity of the rotor, oc the velocity of the non-synchronous
damper, m, Jt and Jp respectively the mass, the transversal and polar moments of inertia of the
disc. Vector f includes the generalized external forces applied to the system, including inbalances.
The above equation includes several peculiarities due to the new effect investigated, which are
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herewith pointed out. Under the above assumptions the inertial properties of the rotor are those
of the disc and the mass and the gyroscopy matrices are consequently computed. Stiffness is only
related to the quill shaft. The elements of matrix K can be obtained through the FEM technique
by using a beam element to describe the mechanical behaviour of the shaft: beam flexural stiffness
formulation can be easily used, including the constraints due to the clamp; then the stiffening
effect due to the pendulum effect is applied by summing the stiffness contribution to the previous
one [3]. According to the Eulero–Bernoulli beam formulation, with the shaft clamped at the upper
end and connected to the centre of gravity of the disc at the other, matrix K is

K ¼
EI

l3
12 �6l

�6l 4l2

� �
þ

mg

30l

36 �3l

�3l 4l2

� �
; ð9Þ

where E, l and I are the Young’s elastic modulus, the length and the inertia moment of the shaft
while m is the mass of the disc and g the gravitational acceleration.
Like in the case of the classic formulation of rotors with non-rotating and rotating

synchrounous damping, coefficients appear twice in equation of motion: once in the term which
multiplies the generalized speed vector and a second one in the term which is proportional to the
generalized displacement vector. In the first one a global effect of damping appears as sum of the
damping coefficients: cz ¼ czn

þ czr
þ czc

; cf ¼ cfn
þ cfr

þ cfc
: In the second one, it is unusual

that the term related to non-synchronous damping can be either positive or negative, depending
on the sign of the angular speed oc: This means that the dangerous effect on the stability of the
rotor owing to the synchronous rotating damping in supercritical regime can be attenuated
directly at this level by tuning a suitable contribution of non-synchronous damping. The
formulation of damping matrices Cn;Cr;Cc is based on the assumption that equivalent viscous
damping coefficients can be obtained and that proportional damping can be applied [3]. In the
case of the demonstrator non-rotating damping is mainly provided by the silent blocks supporting
the stator under the lower plate and by the frame itself; rotating damping is mainly due to the loss
factor Z of the material of the shaft, while non-synchrounous contribution is due to the
electromechanical coupling, i.e., eddy currents dissipation occurring in the secondary disc.
Rotating damping coefficients were computed by means of an equivalent viscous damping
formulation ceq ¼ Zk=l; by approximating the frequency of the hysteresis loop l to the frequency
of the whirling motion [3]. An equivalent viscous damping formulation can be followed for the
non-synchronous eddy current damper, according to and under the assumptions described in
Refs. [14–16].
Numerical investigations were performed by assuming a simplified structure of the damping

matrices in application to the demonstrator. While the rotating synchronous contribution can be
computed through the structural damping model, holding a complete symmetric matrix in
complex co-ordinates, non-rotating and non-synchronous contributions have been only
characterized by diagonal matrices assuming that the cross-coupling elements of the above
matrices were null or at least negligible. A second discussion was open on the role of the rotational
effect of damping (elements cfi

) on the dynamic behaviour of the test rig, as it will appear in the
section dealing with the analysis and the experimental validation. Non-synchronous damping in
the test rig only provides a translational effect because of the phenomenon of current induction,
mainly being based on the mutual displacement of the two discs in the presence of whirling
motion.
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3. Stability analysis

3.1. Stability with only transversal damping active

Equations of motion (4) gave one of the main advantages in using a non-synchronous damper:
it is possible to tune the damping effect by acting not only on the amount of damping (coefficient)
but much more on the angular velocity oc: A rotor can be stabilized sometimes also without
changing the damping coefficients of the dampers. A tuning criterium should be provided to allow
engineers to apply it in practice.
Consider the system spinning in the supercritical regime with respect to the first critical speed:

instability occurs if the angular velocity exceeds a threshold that, for a Jeffcott rotor, is [3]ffiffiffiffiffiffiffiffiffi
k=m

p
1þ cn=cr

� �
: ð10Þ

If a non-synchronous damper is added stability can be again assured by varying the angular
velocity oc: Eq. (4) shows that matrices Cr and Cc have equal sign and so it is possible to
compensate for the unstable effect of the term ioCr by means of the term ioc Cc: Stability
analysis is aimed at determining the threshold as a function of the two angular spin speeds o
and oc:
To point out the circulatory contribution to the equations of motion let us rewrite them by

using real coordinates as follows [3]:

M 0

0 M

" #
€qn þ

C 0

0 C

" #
þ o

0 G

�G 0

" # !
_qn

þ
K 0

0 K

" #
þ o

0 Cr

�Cr 0

" #
þ oc

0 Cc

�Cc 0

" # !
qn ¼ fn; ð11Þ

where qn is the vector of the four generalized displacements in real coordinates

qn ¼ x fy y �fx

� �T
ð12Þ

and fn is the force vector expressed in terms of real coordinates. The part related to vector qn

includes a symmetric matrix, which contains the stiffness K; and two skew-symmetric matrices,
associated to rotating Cr and counter-rotating damping Cc: This structure is typical of a
circulatory system.
If the condition

cr oþ cc oc ¼ 0 ð13Þ

is applied to Eq. (11), it results that the effects of Cr and Cc compensate each other. This is
due to the assumption that translational co-ordinates are damped, while cfr

is assumed to be null.
The skew-symmetric matrices in Eq. (11) related to qn vanished and the system is no more
circulatory. Thanks to this simplification a first study on the stability of the system can be
performed. Kevin, Taft and Chetaev [17] stated in their so-called KTC theorem that for a damped
gyroscopic system:

M €qþ CþGð Þ _qþ Kq ¼ 0 ð14Þ
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with M ¼ MT40; C ¼ CT; G ¼ �GT and K ¼ KT; asymptotical stability [4] is assured when
matrices K and C are both positive definite. System (11), simplified by condition (13), now has
form (14) and the theorem can be applied. Consequently if the angular velocity and the damping
coefficients verify relation (13), system (11) is asymptotically stable.
More in general to define a stability map for gyroscopic rotating systems the homogeneous

equation associated Eq. (4) can be used. Assuming a solution of the form z ¼ z0 e
i l t; where z0 is

the complex amplitude of the dynamic free response and l the frequency of the whirling motion,
the characteristic equation can be obtained by imposing

det �M l2 þ oG lþ iC lþ K� ioCr � iocCcð Þ
� �

¼ 0 ð15Þ

or by splitting into the real and imaginary parts:

Re �M l2 þ oG lþ iC lþ K� ioCr � iocCcð Þ
�� ��� �

¼ 0;

Im �M l2 þ oG lþ iC lþ K� ioCr � iocCcð Þ
�� ��� �

¼ 0:

(
ð16Þ

Determining the values of the angular velocities o;ocð Þ for which the system is stable, i.e., a sort
of map of stability, is the goal of the analysis. In this situation at least one of the solutions of the
system has the form

z ¼ z0 e
i aþi 0ð Þ t; ð17Þ

where the imaginary part of the eigenvalue, i.e., the decay rate of the dynamic response of the
system, is set to zero. The stability limit can be obtained assuming that Eq. (15) the imaginary part
of l is equal to zero and the real part equal to a: This method corresponds to the approach
proposed in Ref. [18]. By introducing the elements appearing in the matrices and solution (17) into
Eqs. (16), it yields

m Jt a4 � m Jp oa3 � Jt k1;1 þ m k2;2
� �

a2 þ Jp k1;1oaþ k1;1 k2;2 � k21;2 ¼ 0; ð18aÞ

�Jt a2 þ Jp oaþ k2;2
� �

cz a� czr
o� czc

oc

� �
¼ 0: ð18bÞ

The following solutions are obtained from Eq. (18b):

a1;2 ¼
Jp o�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Jt k2;2 þ o2 J2p

q
2 Jt

ð19aÞ

a3 ¼
czr

oþ czc
oc

cz

: ð19bÞ

Substituting the first two solutions (19a) into Eq. (18a) all the terms drop out each other and the
identity 0=0 is obtained. Therefore solutions (19a) are not useful to find the analytical expression
of the stability thresholds. By introducing solution (19b) in Eq. (18a), it can be found that

m Jt
czr

oþ czc
oc

cz

� �4
� m Jp o

czr
oþ czc

oc

cz

� �3

� Jt k1;1 þ m k2;2
� � czr

oþ czc
oc

cz

� �2
þ Jp k1;1o

czr
oþ czc

oc

cz

� �
þ k1;1 k2;2 � k21;2 ¼ 0: ð20Þ
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The latter allows to compute the stability thresholds of the system. Eq. (20) can be written in
non-dimensional form

c0zr
o0 þ o00

c

� �4
� J 0

p o
0 c0zr

o0 þ o00
c

� �3
� k0

2;2 þ 1
� �

c0zr
o0 þ o00

c

� �2
þ J 0

p o
0 c0zr

o0 þ o00
c

� �
þ k0

2;2 � k21;2 ¼ 0; ð21Þ

where

o0 ¼
offiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1;1=m
p ; o0

c ¼
ocffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1;1=m
p ; o00

c ¼ o0
c

czc

cz

; J 0
p ¼

Jp

Jt

;

c0zr
¼

czr

cz

; k0
2;2 ¼

k2;2

Jtk1;1=m
; k0

1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21;2

m Jt k1;1=m
� �2

vuut :

Eq. (21) is used to plot a stability map of the system in terms of non-dimensional angular
velocities o0 and o00

c : On the map it is possible to find, for each value of the angular velocity o;
the values of the angular velocity oc of the non-synchronous damper for which the rotor
is stable.
Fig. 4 shows the stability maps obtained from Eq. (21) with c0zr

¼ 0:1: A region of stability
clearly appears in the middle. In the case of the Jeffcott’s rotor the two curves delimiting the
stability region in Fig. 4 are simply two straight lines, as shown in Ref. [12]. The gyroscopic terms
induce a sort of shift of the stability zone with increasing angular velocity. The two curves have
the following asymptotes, for positive values of the non-dimensional angular velocity o0:

c0zr
o0 � o00

c ¼ 0;

c0zr
o0 � o00

c ¼ 1:
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the translational motion (c0zr
¼ 0:1).
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Expression (13) obtained according to the KTC theorem [17] corresponds to one asymptote
of the stability curve (Fig. 4) and the asymptote is always inside the stability region. In a
machine equipped with a non-synchronous damper, expression (13) can be used as a law to
establish, for each value of the rotating speed o; the angular velocity oc of the non-synchronous
damper suitable to achieve the stability. For higher values of the rotational speed o condition
(13), shown in Fig. 4 by a straight line inside the stability region, is close to the stability limit.
In this situation if any disturbance changes the configuration of the system, the machine
could overcome the stability limit and become unstable. Therefore a designer is suggested, for
higher angular velocity o; to operate the rotor slightly far from the neighbourhood described by
relation (13).
On the right of the stability zone, forward modes are unstable. In particular, in the first zone the

first forward mode is unstable, while in the second one both forward modes are unstable. On the
left of the stability zone, a similar situation occurs for the backward modes, both or only one
being unstable.
The dependence of the size of the stability zone on the value of non-dimensional rotating

damping c0r is shown in Fig. 5. This parameter spans from 0, for which there is no rotating
damping, to 1, in which case there is only rotating damping and other dampings are ineffective.
The increasing value of c0r causes a ‘‘rotation’’ of the stability zone and it is necessary, if the other
parameters are left unchanged, to increase the non-dimensional angular velocity o00

c to obtain the
stability of the rotor.
3.2. Stability with damping on both translational and angular co-ordinates

Consider the system modelled by Eq. (4) including a non-vanishing damping coefficient cf:
The stability curves can be drawn again as functions of the angular velocities o and oc;
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as already done before. In this case the equations corresponding to Eqs. (18a) and (18b) are

m Jt a4 � Jp moa3 � cz cf þ Jt k11 þ m k22
� �

a2 þ cfr
cz oþ czr

cf oþ Jp k11oþ cf czc
oc

� �
a

� k212 þ k11 k22 � czr
cfr

o2 � cfr
czc

oc o ¼ 0; ð22aÞ

� cz Jt þ cf m
� �

a3 þ cz Jp oþ czr
Jt oþ cfr

moþ Jt czc
oc

� �
a2

þ cf k11 þ cz k22 � czr
Jp o2 � Jp o czc

oc

� �
a� cfr

k11o� czr
k22o� k12 czc

oc ¼ 0: ð22bÞ

Now it is impossible to obtain the stability limits from one of the equations after solving the
other one in a: An alternative way to plot the stability region is obtaining oc from Eq. (22b)

oc ¼ � cz Jt þ cf m
� �

a3 þ cz Jp oþ czr
Jt oþ cfr

mo
� �

a2 þ cf k11 þ cz k22 � czr
Jp o2

� �
a

�
�cfr

k11o� czr
k22o

�
= czc

k22 þ Jp oa� Jt a2
� �� �

ð23Þ

and substituting it into Eq. (22a)

m J2t a
6 � 2 Jp Jt moa5 � k11 J2t � c2f m þ 2 Jt k22m � J2p mo2

� �
a4

� �2 Jp Jt k11oþ 2 cfr
cf mo� 2 Jp k22mo

� �
a3

� c2f k11 þ Jt k212 � 2 Jt k11 k22 � m k222 þ J2p k11o2 � c2fr
mo2

� �
a2

� �2 cf cfr
k11o� Jp k212oþ 2 Jp k11 k22o

� �
aþ k212 k22

� k11 k222 � c2fr
k11o2 ¼ 0: ð24Þ

The stability curves are computed by assuming a constant value of o; by solving Eq. (24) as a
function of a and introducing the results in Eq. (23). Several values of oc related to the value of o
previously assumed are obtained this way.
Stability graphs obtained including the contribution of the damping on the rotational co-

ordinates are quite different from those obtained in the presence of damping only in the
translational coordinates. Some numerical examples are shown in Fig. 6. Coefficient cfn

has been
set equal to 0.1, 0.01, 0.001 and 0.0001, while cfr

is 0.2 of cfn
: The numerical values for all the

other parameters are equal to those used in Fig. 4. Non-dimensional parameters have been
introduced to compare the results in the four stability maps of Fig. 6. These stability zones change
considerably for different values of damping on the rotational degrees of freedom. The path is
irregular and sometimes curves almost cross each other. For higher values of cfn

(0.1) the stability
zone splits, while for lower values of cfn

(0.0001) plots similar to Fig. 4 are obtained.
4. Experimental results

4.1. Orbits monitoring

The whirling motion monitoring can be done on the demonstrator by the optical sensors
installed. The lateral displacements of the disc detected by the optical sensors were numerically
filtered to reduce the noise. Particularly interesting is the evidence of either the occurring
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Fig. 7. Orbit and position signals of the first forward whirling mode at standstill.
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Fig. 8. Orbit and position signals of the first forward whirling mode at 1500 rev/min, and damper standstill.
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stabilization or dynamic instability on forward and backward whirls. The standstill dynamic
behaviour can be observed by exciting the first forward mode of the pendulum rotor. As Fig. 7
shows, thanks to the non-rotating damping applied by the electromagnetic damper, in this case
fixed, the first forward mode appears stable in time, the decay rate of the position signals is
positive and their amplitude decreases. If the disc rotates and the damper is still fixed, the orbit
documented in Fig. 8 appears stable, at least up to 1500 rev/min, showing a positive decay rate on
position signals. In case of counter-rotation of the damper disc if is possible to observe that if one
excites the forward mode it is stabilized quite fast by the counter-rotating damping, but after that
the first backward mode is excited by the damper and the amplitude of the orbit (Fig. 9) grows
exponentially towards the instability. It is remarkable that a slight counter-rotation is favourable
to stabilize the forward whirl, but definitely dangerous for the backward whirling, which appears
unstabilized.

4.2. Model validation and stability analysis

The above model has been applied to the demonstrator to validate the preliminary statements
which came out from the numerical investigations performed and to find the corresponding
explanations for the dynamic behaviour documented in the orbit monitoring activity. To predict
the dynamic behaviour of the system two models have been built: the 4 dof real one and a
FEM model. The resulting Campbell diagram is shown in Fig. 10: the frequencies obtained by the
4 dof model (continuous line), by the FEM model (dashed line) and the experimental results
(crosses) are compared. The FEM model was built using DYNROT FEM code for rotordynamic
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analysis. Only the first forward and backward modes are shown because only these modes are of
interest in the demonstration dealing with the stability analysis. The frequency of the position
signals monitored by the optical sensors was provided by evaluating the power spectral density
through the Welch method of spectral estimation [19]. As Fig. 10 shows, the frequencies obtained
from the numerical analysis are close to the experimental ones; nevertheless, the FEM model
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approximates experimental results better then the 4 dof model, since it takes into account more
accurately for the connection between the disc and the shaft.
To obtain an experimental stability map of the system, the rotating magnetic disc attached

to the quill shaft was moved from the equilibrium position and the first mode forward or
backward was excited, while the aluminium disc rotated at a constant angular velocity.
The amplitude of the oscillations detected by the two optical sensors along two orthogonal
directions was recorded by the signal analyzer, and then the orbits were observed. The angular
velocity of the aluminium disc was gradually modified until the stability limit was reached, i.e., a
constant amplitude of the oscillation was obtained. The stability limits obtained from
the experiments (crosses) and using the 4 dof model by neglecting the effect of the damping
on the angular co-ordinates are shown in Fig. 11 left . The parameters used in the numerical
model are reported in Table 1. The magnetic damping coefficient was approximatively computed
in a previous work [20] using an FEM model of the magnetic field and Nagaya’s formulas [14].
The damping coefficient of the system was obtained using the structural damping of the quill
shaft. Actually most of the system damping is due to the shaft because this element is quite
deformable and it dissipates most of the energy. Experimental and numerical curves are in
good accordance. In particular, the slope of the curve on the left is quite similar to numerical
results even if there is a sort of translation. On the other hand, the curve on the right shows a
different slope if compared to numerical values. A tuning on the damping parameters of the
model was done in order to obtain a better identify at least under stationaryconditions; damping
on the angular co-ordinates was added. New damping coefficients are reported in Table 2.
The experimental and theoretical stability limits obtained by using the updated model
are reported in Fig. 11-right. The agreement between experimental and numerical values
for the forward and backward modes improves by also taking into account the damping related
to rotations.
As Fig. 11 shows the whirling conditions monitored and documented in the above paragraph

correspond to three working points on the map: the first experiment cited in Fig. 7 is performed in
the region of absolute stability, where both backward and forward modes are stable. The second
one was performed in the same region by increasing the value of the spin speed from zero up to
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Fig. 11. Stability map of the experimental demonstrator in plane o (rotor spin speed) versus oc (counter-rotating spin

speed): comparison between numerical (–) and experimental results (	).
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Table 1

Properties of the test rig (nominal values)

Component Property Symbol Value

Magnetic disc Mass m 222 g

Transverse moment of inertia Jt 7:02	 10�5 kg=m2

Polar moment of inertia Jp 1:28	 10�4 kg=m2

Wire (shaft) Diameter d 0:5	 10�3 m
Length l 0.147m

Modulus of elasticity E 2:05	 1011 N=m2

Damping coefficients Non-rotating czn 9:5	 10�3 N s=m
Rotating czr 5	 10�4 N s=m
Magnetic czc 8	 10�3 N s=m

Table 2

Tuned damping coefficients used in the upgraded model of the test rig

Translational co-ordinates Non-rotating czn 9:5	 10�3 N s=m
Rotating czr 4:5	 10�4 N s=m
Magnetic czc 1:5	 10�2 N s=m

Angular co-ordinates Non-rotating cfn 10�5 Nms=rad
Rotating cfr 8	 10�7 Nms=rad
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1500 r.p.m. In the last case the combination of a rotation at 1140 r.p.m. of the disc and a counter-
rotation at 230 r.p.m. of the damper moved the working point on the map towards the instability
region of the backward whirling.
5. Conclusions

The main contribution of the present study deals with the mutual interaction between
gyroscopic effect and non-synchronous damping in rotating systems. The concept of counter-
rotating and co-rotating damping was already investigated in Ref. [12], by neglecting the
gyroscopic effect and resorting to the classical Jeffcott rotor. This step was required in order to
outline the main role of the non-synchronous rotation on rotor dynamics, when it is associated
with any form of dissipation. Industrial applications show that gyroscopic effects are often a
relevant aspect of the behaviour of the rotating machinery. An extension of the analytical model
proposed in Ref. [12] is used to describe the behaviour of a gyroscopic non-synchronously
damped rotor. The analysis is mainly focused on the dynamic stability of a test rig built and
modelled with the aim of experimentally verifying the numerical prediction obtained from the
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model. The response of a system, where non-synchronous rotating damping affects only
translational lateral motions, was first studied. This condition seems to be the most effective in
electromechanical coupled eddy current dampers. A relevant result shown by the numerical and
experimental investigation is that the stability map of the system includes a region of asymptotic
stability for forward and backward whirling achievable by acting on both non-synchronous
rotation and damping coefficient also when gyroscopic effects are accounted for. The stability
zone depends on both rotor and non-synchronous angular speeds. Instability can affect one or
two modes; furthermore, backward modes can be unstabilized if counter-rotation is too fast. An
interesting effect is that the value of the rotating damping coefficient causes a rotation of the
stability region about the thresholds at zero spin speed of the rotor. When the non-synchronous
rotating damping coefficient related to the rotational degree of freedom of the rotor is taken into
account, the neighbourlines of the regions of the map of stability become irregular, if compared to
the previous case, depending on the numerical value of the coefficient itself, and for lower values it
appears similar to those previously computed. Experiments performed using an eddy current
damper acting on a disc suspended by a quill shaft confirm that the model is able to predict
the behaviour of non-synchronously damped systems in terms of natural frequency and stability
thresholds. In particular, both the contributions affecting the translational and rotational
co-ordinates are important to predict correctly the region of stability of a gyroscopic rotor.
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